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1 Introduction

Where we're going: given an IF,-algebra R, we want to construct a canonical complex comput-
ing its crystalline cohomology. Our first attempt is to lift R to characteristic zero, along with a
Frobenius map, and take the p-completed de Rham complex of this lift R. This computes the
right cohomology, but it has an obvious flaw: as a complex, it depends on our choice of lift.

To fix this problem, we will view O # as a Dieudonné complex (or better, a Dieudonné algebra—
you can probably imagine roughly what this means, and we’ll define it later today), and we
will apply two homological algebra operations to this: saturation and (“V-adic”) completion
(= strictification). These operations will enlarge our complex considerably. We will eventually
show that the output of this process satisfies a universal property depending only on R, which
implies that it is well-defined and functorial in R.

The main goals for this talk are as follows: introduce the last completion operation W and
check that it behaves as expected, define Dieudonné algebras, and finally discuss some proper-
ties of the de Rham complex and its p-adic completion as Dieudonné algebras.

2 The completion of a Dieudonné complex

Let M* be a saturated Dieudonné complex. Last time we saw how to endow M* with a
Verschiebung operator V', a homomorphism of graded abelian groups satisfying VF = FV = p,
Vd=pdV, and F'dV = d. This allows us to make the following definition:

Definition 2.1. For M* a saturated Dieudonné complex, we set W, (M)* = M*/(im V" +
im dV'") for r > 0. These come equipped with quotient maps R : W, (M) — W,, which allow
us to form the completion

WM = lim (- - = Wh(M)* = Wy (M)* = Wo(M)* = 0). (1)

*Notes for a talk in Berkeley’s number theory seminar, on Bhatt-Lurie-Mathew’s paper Rewvisiting the de
Rham-Witt complez.



Clearly, this is a complex of abelian groups equipped with a morphism py; : M* — W(M)*.
We have several claims:

1. W(M)* is naturally equipped with the structure of a Dieudonné complex, and is functorial
in M*.
2. W(M)* is saturated.

3. Define a saturated Dieudonné complex M* to be strict if M* — W(M)* is an isomor-
phism. Then W(M)* is strict, and it is universal among strict Dieudonné complexes
equipped with a map from M™*.

4. The category DCy, of strict Dieudonné complexes is equivalent to the category of so-
called strict Dieudonné towers (to be defined soon), which will package together the data
of W,.(M)* for all r without assuming that they actually come from some M*.

5. There is a “generalized Cartier isomorphism” relating W, (M )* to H*(M*/p"M*).

Before checking these properties, let’s look at two examples.

First, let A = A[0] be any abelian group viewed as a complex concentrated in degree zero. Then
any group map F : A — A gives A the structure of a Dieudonné complex. This is saturated if
and only if A is p-torsion-free and F' is an isomorphism. If so, then im V" +imdV" = p" A, so
W(A)* is the p-adic completion.

A more complicated example is the free strict Dieudonné complex on one generator x. We
set

MO = {Z a/mFm.T + anvnx ) bn € Zp’ A, — 0} (2)
m>0 n>0

M, = {Z e Fdr + Z dpdV"x 2 ey dyy € Ly, ¢y — 0} (3)
m>0 n>0

and

d (Z am " + Z an"x> = Z P an Fdr + Z b, dV"x. (4)

m>0 n>0 m>0 n>0

(Note that there is no condition on b, or d,,, because V™ and dV™ already converge to 0.) Then

M* = (M, KN M) is a strict Dieudonné complex, and it is freely generated by z = F°z € M°
in the sense that for any N* € DCyg,, evaluation on x gives a bijection

Hompg(M*, N*) — N°. (5)

Let’s start checking our claimed properties. First, in order for W(M)* to be a Dieudonné com-
plex, we must endow it with a Frobenius. To do so, we note that since F'V = p and FdV = d,
F maps im V" + imdV" into im V""! 4+ im dV"~! and thus induces a unique map W,(M)* —
W,_1(M)*. Passing to the inverse limit gives a Frobenius map F': W(M)* — W(M)*, which
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satisfies the relation dF = pF'd because this is true at all finite levels. This makes W(M)* a
Dieudonné complex.

For future reference, we note the V-analogue of this as well: V' maps im V" 4+ imdV" into
im V™ + im dV™ ! (because Vid = pdV), so we get a map V : W,.(M)* — W,,1(M)*, which

likewise passes to the limit.

Functoriality is clear: given f : M* — N* we get maps f : W, (M*) — W,(N*) for all r,
compatible with the respective d and F' maps. Then f passes to the limit, as does its compat-
ibility with d and F'.

2.1 Strict Dieudonné towers

At this point, it is useful to introduce the notion of a strict Dieudonné tower. This will abstract
away the properties of the system (W, (M)*), and it will often be useful to work with the tower
rather than the completion W(M)*.

Definition 2.2. A strict Dieudonné tower is an inverse system of complexes of abelian groups
oo xr B xr 8o (6)

equipped with maps of graded groups F' : X ;| — X and V : X — X |, satisfying the
following properties:

1. X{ is the zero complex.

2. R: X | — X is surjective for all 7, n.

3. dF = pFd.

4. F,V,and R all commute with each other.

5. FV =VF =p-id.

6. For all x € X with dx € pX}, x € im(F : X}, — X}).

7. The kernel of R : X | — X equals the p-torsion subgroup of X ;.

8. The kernel of R : X | — X equals im(V") +im(dV"), where V" and dV" are the maps
Xi— X7,

A morphism of strict Dieudonné towers is a family of morphisms X' — Y, compatible with
d,R,F, and V. We write TD for the resulting category.

Proposition 2.3. (2.6.2) If M* is a saturated Dieudonné complex, then (W, M)* is a strict
Dieudonné tower.

The only nontrivial properties are (6) and (7). To prove these we use an easy lemma:



Lemma 2.4. (2.6.3) If M* is saturated and v € M* satisfies d(V"x) € pM**! for some r, then
x €imF.

Proof. Since d(V"x) € pM**1, we have dv = F"d(V"x) € pM*™! and then x € im F because
M* is saturated. O

Proof of proposition. Property 7 amounts to saying that for x € M*, we have x € im V"+im dV"
if and only if pxr € im V"™ + im dV"*!. The forward implication is clear:

p(VTa+dV"b) = V" (pa) + dV" (pb) (7)
= V" (Fa) + dV" (FD). (8)

For the reverse implication®, suppose pr = V"a+dV"b for some a, b. Taking d of both sides, we
see that d(V"a) is a multiple of p. By the lemma, it follows that a« = Fa for some a. But then
pr =pV"'a+dV7b, so dV'b is also divisible by p, and thus b = Fb for some b. We conclude
that pr = pV"~'a + pdV"~1b. Since M* is p-torsion-free, we are done.

For property 6, suppose T € W,(M)* has the property that dz € pW,(M)*. Choosing a
representative x € M*, this means that dx = py + V"a + dV"b for some a, b,y € M*. Taking d
of both sides, we see as before that d(V"a) is divisible by p and so a = Fa for some a. Then
we have

d(z —V'b) =p(y + V" 'a), (9)

so the fact that M* is saturated implies that  —V"b = F(z) for some z € M*. But this reduces
toT € W,.(M)*, so Z € W,41(M)* maps to T, and we are done. O

Proposition 2.5. Let (X}) be a strict Dieudonné tower, and let X* = lim, . X be equipped
with its natural Frobenius. Then (X*, F) is a saturated Dieudonné complex.

Proof. First of all, it is a Dieudonné complex, because the identity dF' = pF'd passes to the
limit. To see that it is p-torsion-free, take any (z,), in the inverse limit with p(x,) = 0. By
property 7, we have z,_y = R(z,) = 0 for all r.

It now remains to prove the main property of saturated complexes: that F gives a bijec-
tion from X* to {z € X* : dz € pX*™'}. Note that F is injective, because VF = p is. For
surjectivity, suppose x = (x;),x; € X; has de € pX*. By property 6, each z; equals F(y;) for
some y; € X7. These y; are not compatible in general-—but they are compatible after applying
F, thus after applying VF = p, thus after applying R : X — X/, by property 7. So the
inverse system (R(y;11) € X;) is compatible and has the desired image under F. O

2.2 Homological properties of W, (M)*

Our next goal is to show that the completion map M* — W(M)* is a strictification; that
is, a universal morphism to a strict Dieudonné complex. In the process, we will prove some
homological properties of W, (M)* which will be useful later, and which will shed some light on
the importance of taking the V-adic completion.

! This proof is surprisingly reminiscent of the standard proof that /D is irrational!
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Proposition 2.6. (Generalized Cartier isomorphism) Let M* be a saturated Dieudonné com-
plex and r > 0. The map F" : M* — M* induces an isomorphism of graded groups

Wi (M)" — H*(M"[p"M?). (10)

Proof. Given an element T € W,(M)* represented by x € M*, we map T to the cohomology
class [F"x] € H*(M*/p" M*); note that this is a cycle because dF"z = p"F"dx € p" M**!. This
is well-defined because [V"z] — [F"V"z] = [p"z] = 0 and [dV"z]| — [F"dV"x] = [dz] = 0. To
prove injectivity, note that [F"z] = 0 implies that F"z = p"y +dz, so F"(x —V"y—dV"z) = 0.
But F" is injective, so  must vanish in W,(M)*. Surjectivity amounts to the statement that
Fr:M* — {x € M*:dx € p"M*} is surjective. In fact it is a bijection; this is the definition
of saturation in the case r = 1, and follows from induction in general. m

Warning: this isomorphism does not pass to the inverse limit. In fact it is not even compat-
ible with the obvious maps R : W,.(M)* — W,_;(M)* and H*(M*/p"M*) — H*(M*/p" ' M*),
since the map at rth level is induced by F". It is compatible if one uses the map F' : W, (M)* —
W,—1(M)*, but of course this gives a different inverse system.

This proposition tells us that W, (M)* has a remarkable property: the complex W,(M)* up
to isomorphism “encodes” the complex M*/p"M* up to quasi-isomorphism. This is extremely
useful for our purposes: when constructing the de Rham-Witt complex of a ring R, we begin
with the de Rham complex of a lift R, which is “the right complex up to quasi-isomorphism”,
and applying the strictification will help us isolate “the right complex on the nose”. One way
to make this precise is with the following rigidity result:

Corollary 2.7. Let f : M* — N* be a morphism in DCgy. The following conditions are
equivalent:

1. f induces a quasi-isomorphism M*/pM* — N*/pN*.

2. [ induces an isomorphism Wy (M)* = W;(N)*.

3. For allr >0, f induces a quasi-isomorphism M*/p"M* — N*/p" N*.
4. For allr >0, f induces an isomorphism W,(M)* = W,(N)*.

Proof. The proposition implies (1) <= (2) and (3) <= (4). The implication (3) = (1)
is trivial, and (1) = (3) can be proved by induction on r. O

Proposition 2.8. (2.7.6): Let M* be a saturated Dieudonné complex. Then W(M)* is strict;
i.e. the map pywny- : W(M)* = WOWV(M))* is an isomorphism.

Proof sketch. One can check directly that py) = W(par). So it suffices to check that W, (par)
W,.(M)* — W, (W(M))* is an isomorphism for each r. By the previous corollary, it suffices to
check this for » = 1. This can be done by hand. O]

One can then prove that pp« : M* — W(M)* is in fact the initial map from M* to a
strict Dieudonné complex, and so the completion functor DCg,; — DCyg, is left-adjoint to the
forgetful functor. We omit the proof.



At this point, one can show that (W,(—)) : DCy, — TD is an equivalence of categories:
the reverse equivalence is lim, , and the only thing to check is that a strict Dieudonné tower
(X,)* is naturally isomorphic to (W, (lim.; X})).

The following results continue our theme of comparing M* with W(M)*.

Proposition 2.9. For M* € DCygy, the map py : M* — W(M)* induces quasi-isomorphisms
M*/p"M* — W(M)*/p"W(M)* for every r.

Proof sketch. We stated this with “/p" replaced with “WV,” in the proof of the last proposition.
Apply the equivalence (3) <= (4) in the previous corollary to that. O

The following result extends the last in two ways: it deals directly with the inverse limit
(using a p-completion hypothesis), and applies to the strictification M* — W Sat(M™*) of a not
necessarily saturated Dieudonné complex M*.

Corollary 2.10. Let M* be a Dieudonné complex of Cartier type (not necessarily saturated),
and suppose each M"™ is p-adically complete. Then the strictification map M* — W Sat(M*) is
a quasi-isomorphism.

Proof. Both the domain and codomain are complexes of p-complete, p-torsion-free abelian
groups,? so it suffices® to show that M*/pM* — W Sat(M*)/pWW Sat(M*) is a quasi-isomorphism.
But this factors as

M* [pM* — Sat(M™)/pSat(M*) — W Sat(M*)/pW Sat(M™), (11)

where the first map is a quasi-isomorphism by the Cartier criterion (the main theorem proved
in Dan’s talk last week), and the second is the r = 1 case of the previous proposition. O

3 Dieudonné algebras

Definition 3.1. A commutative differential graded algebra (cdga) is a complex (A*, d) with the
structure of a graded ring such that:

a) Multiplication is graded-commutative: for z € A™ and y € A", zy = (—=1)""yx € A™".
b) If z € A" with n odd, then 22 = 0 € A?*". (This is automatic if A* has no 2-torsion.)
¢) The Leibniz rule d(zy) = (dx) -y + (—=1)™x - dy for x € A™.

Definition 3.2. A Dieudonné algebra (A*,d, F') is a cdga (A*,d) equipped with a graded ring
homomorphism F': A* — A* such that:

1. dF = pFd : A* — A*1,

2TO DO: clarify the subtlety in saying that WV Sat(M)™ is p-complete.
3TO DO: check this!



2. A" =0 when n < 0.
3. For z € A’ Fx = 2P (mod p).

These form a category DA, where the morphisms are morphisms of graded rings compatible
with d and F'. Note that we have an obvious forgetful functor DA — DC.

Reinterpretation: We can endow the category DC with a tensor product, given by the usual
tensor product of complexes (with d(z ® y) = dr ® y + (—1)*lz ® dy for + homogeneous) with
F(r®y) = F(z) ® F(y). This makes DC into a symmetric monoidal category, where the
symmetry is given by the isomorphism

A*®B* 3 B @ A* (12)
a®b— (—1)fp ® q. (13)

Then a Dieudonné algebra is a commutative algebra object in the category DC, where the
“commutativity” diagram encodes graded commutativity, and DA is the full subcategory of
CommAlg(DC) where conditions 2, 3, and b above hold. (Note that strict Dieudonné com-
plexes are automatically torsion-free, by fiat for p-torsion and by p-completeness for ¢-torsion,
so condition b comes for free when A* is strict.)
Remark: For A* a Dieudonné algebra, n,(A)* is a Dieudonné subalgebra of A*. The only
subtle part is that Fz = 27 (mod p(n,A°)), because 1,A° # A° in general. To show that it
works, suppose z € (1,A)°, so that dx = py for p € A'. Then since A* is a Dieudonné algebra,
we have Fx = xP + pz, for some z € A°. To show that z € (n,A)° (i.e. dz € pA'), we calculate

p(dz) = d(pz) = d(Fx — 2P) = pF(dz) — pa?'dx = p*Fy — p*aP 'y (14)
and cancel p’s.

Moreover, last week we saw that Frobenius operators on a p-torsion-free complex A* corre-
spond to maps « : A* — n,A* of complexes, where o = p" [ in degree n. The same discussion
goes through in this complex, where the maps « are required to be cdga homomorphisms:

{graded ring homomorphisms F': A* — A* with dF = pFd}

!

{cdga homomorphisms a : A* — 1, A"}

Example: Let R be an F,-algebra, and W(R) = W(R)[0] its ring of Witt vectors, as a cdga
concentrated in degree 0. Then the Witt vector Frobenius F': W(R) — W(R) makes W(R) a
Dieudonné algebra. This is saturated as a Dieudonné complex if and only if F'is a bijection, if
and only if R is perfect. In this case, W(R) is also p-complete and p"W (R) = im V" +im dV",
so W(R) is also a strict Dieudonné complex. (Next week, Rahul will tell us about how the
saturation and completion operations behave for Dieudonné algebras.)



3.1 The de Rham complex

As the following proposition shows, a more interesting example of a Dieudonné algebra is given
by the absolute de Rham complex Q7 := Q7 Iz of a (p-torsion-free) ring R equipped with a lift
of Frobenius. (Remark: you can drop the p-torsion-free hypothesis by using d-maps instead of
lifts of Frobenius, and taking some care with the setup. This is done in section 3.7 of the paper,
but we will ignore it.)

Proposition 3.3. Let R be a p-torsion-free commutative ring, and ¢ : R — R a homomorphism
with p(xz) = 2P (mod p). Then there is a unique ring homomorphism F : Q% — Q% such that

1. For each x € R = Q%, we have F(x) = p(x).

2. For each x € R, we have F(dx) = 2P~ 'dx + d(%).
This F' gives 2}, the structure of a Dieudonné algebra.

Interpretation of the second condition: F'is the “divided Frobenius” If—; on %, where ¢* =
ar is pullback of differential forms. As an aside, note that we could alternatively define the
cdga homomorphism « : QF — QF to be pullback of differential forms, note by the calculation

a(dr) = da(r) = dp(z) = d(2P) = pz” ' =0  (mod p) (15)

that « is divisible by p on Qk, and conclude (because Q* is generated by Q' as a ring) that o
is divisible by p" on Q". Then if Q} is p-torsion-free, we could define F' as 5 on 2". But in
fact (2}, can have p-torsion even if R is quite reasonable. For example, if K 1s a number field,
then Q}QK /7 has p-torsion if and only if K/Q is ramified at p. (Its annihilator is the different
ideal of K/Q.)

The proof of the proposition is explicit. Uniqueness of F' is clear, as it has been specified on a
set of generators of Q%. One calculates that the map p: R — Q}, given by P~ 'dx + d(W)
is a @-linear derivation; i.e. an additive map satisfying p(xy) = ©(x)p(y) + ¢(y)p(z). The
universal property of d : R — QJ, implies that p factors as F o d for some p-semilinear map
F :Qf — QL. Then F satisfies the relations (F(dz))? = 0 for all z € R, so it extends to the
exterior algebra (%. Finally, one checks that it satisfies the necessary relation dF' = pF'd on
the inputs x and dz (x € R), and that this identity is preserved by multiplication.

Proposition 3.4. Let R and ¢ be as before, and view 0}, as a Dieudonné algebra. For any
p-torsion-free Dieudonné algebra A*, the restriction map

Hompa (2%, A*) — Homyine (R, A°) (16)

is injective, and its image consists of homomorphisms f : R — A° such that the diagram

R 0

commautes.



