Completions of Dieudonné complexes and Dieudonné algebras

Ravi Fernando - fernando@berkeley.edu

September 19, 2018*

1 Introduction

Where we're going: given an \mathbb{F}_p -algebra R, we want to construct a canonical complex computing its crystalline cohomology. Our first attempt is to lift R to characteristic zero, along with a Frobenius map, and take the *p*-completed de Rham complex of this lift \tilde{R} . This computes the right cohomology, but it has an obvious flaw: as a complex, it depends on our choice of lift.

To fix this problem, we will view $\widehat{\Omega}_{\widetilde{R}}$ as a Dieudonné complex (or better, a Dieudonné algebra you can probably imagine roughly what this means, and we'll define it later today), and we will apply two homological algebra operations to this: saturation and ("V-adic") completion (= strictification). These operations will enlarge our complex considerably. We will eventually show that the output of this process satisfies a universal property depending only on R, which implies that it is well-defined and functorial in R.

The main goals for this talk are as follows: introduce the last completion operation \mathcal{W} and check that it behaves as expected, define Dieudonné algebras, and finally discuss some properties of the de Rham complex and its *p*-adic completion as Dieudonné algebras.

2 The completion of a Dieudonné complex

Let M^* be a saturated Dieudonné complex. Last time we saw how to endow M^* with a Verschiebung operator V, a homomorphism of graded abelian groups satisfying VF = FV = p, Vd = pdV, and FdV = d. This allows us to make the following definition:

Definition 2.1. For M^* a saturated Dieudonné complex, we set $\mathcal{W}_r(M)^* = M^*/(\operatorname{im} V^r + \operatorname{im} dV^r)$ for $r \geq 0$. These come equipped with quotient maps $\mathbb{R} : \mathcal{W}_{r+1}(M) \to \mathcal{W}_r$, which allow us to form the *completion*

$$\mathcal{W}(M)^* = \lim_{\leftarrow} (\dots \to \mathcal{W}_2(M)^* \to \mathcal{W}_1(M)^* \to \mathcal{W}_0(M)^* = 0).$$
(1)

^{*}Notes for a talk in Berkeley's number theory seminar, on Bhatt-Lurie-Mathew's paper *Revisiting the de Rham-Witt complex*.

Clearly, this is a complex of abelian groups equipped with a morphism $\rho_M : M^* \to \mathcal{W}(M)^*$. We have several claims:

- 1. $\mathcal{W}(M)^*$ is naturally equipped with the structure of a Dieudonné complex, and is functorial in M^* .
- 2. $\mathcal{W}(M)^*$ is saturated.
- 3. Define a saturated Dieudonné complex M^* to be *strict* if $M^* \to \mathcal{W}(M)^*$ is an isomorphism. Then $\mathcal{W}(M)^*$ is strict, and it is universal among strict Dieudonné complexes equipped with a map from M^* .
- 4. The category \mathbf{DC}_{str} of strict Dieudonné complexes is equivalent to the category of socalled *strict Dieudonné towers* (to be defined soon), which will package together the data of $\mathcal{W}_r(M)^*$ for all r without assuming that they actually come from some M^* .
- 5. There is a "generalized Cartier isomorphism" relating $\mathcal{W}_r(M)^*$ to $H^*(M^*/p^rM^*)$.

Before checking these properties, let's look at two examples.

First, let A = A[0] be any abelian group viewed as a complex concentrated in degree zero. Then any group map $F : A \to A$ gives A the structure of a Dieudonné complex. This is saturated if and only if A is p-torsion-free and F is an isomorphism. If so, then im $V^r + \operatorname{im} dV^r = p^r A$, so $\mathcal{W}(A)^*$ is the p-adic completion.

A more complicated example is the *free strict Dieudonné complex on one generator* x. We set

$$M_0 = \{\sum_{m \ge 0} a_m F^m x + \sum_{n > 0} b_n V^n x : a_m, b_n \in \mathbb{Z}_p, a_m \to 0\}$$
(2)

$$M_1 = \{\sum_{m \ge 0} c_m F^m dx + \sum_{n > 0} d_n dV^n x : c_m, d_n \in \mathbb{Z}_p, c_m \to 0\}$$
(3)

and

$$d\left(\sum_{m\geq 0} a_m F^m x + \sum_{n>0} b_n V^n x\right) = \sum_{m\geq 0} p^m a_m F^m dx + \sum_{n>0} b_n dV^n x.$$
 (4)

(Note that there is no condition on b_n or d_n , because V^n and dV^n already converge to 0.) Then $M^* = (M_0 \stackrel{d}{\rightarrow} M_1)$ is a strict Dieudonné complex, and it is freely generated by $x = F^0 x \in M^0$ in the sense that for any $N^* \in \mathbf{DC}_{str}$, evaluation on x gives a bijection

$$\operatorname{Hom}_{\mathbf{DC}}(M^*, N^*) \to N^0.$$
(5)

Let's start checking our claimed properties. First, in order for $\mathcal{W}(M)^*$ to be a Dieudonné complex, we must endow it with a Frobenius. To do so, we note that since FV = p and FdV = d, F maps im $V^r + \operatorname{im} dV^r$ into im $V^{r-1} + \operatorname{im} dV^{r-1}$ and thus induces a unique map $\mathcal{W}_r(M)^* \to \mathcal{W}_{r-1}(M)^*$. Passing to the inverse limit gives a Frobenius map $F : \mathcal{W}(M)^* \to \mathcal{W}(M)^*$, which satisfies the relation dF = pFd because this is true at all finite levels. This makes $\mathcal{W}(M)^*$ a Dieudonné complex.

For future reference, we note the V-analogue of this as well: V maps $\operatorname{im} V^n + \operatorname{im} dV^n$ into $\operatorname{im} V^{n+1} + \operatorname{im} dV^{n+1}$ (because Vd = pdV), so we get a map $V : \mathcal{W}_r(M)^* \to \mathcal{W}_{r+1}(M)^*$, which likewise passes to the limit.

Functoriality is clear: given $f: M^* \to N^*$, we get maps $f: \mathcal{W}_r(M^*) \to \mathcal{W}_r(N^*)$ for all r, compatible with the respective d and F maps. Then f passes to the limit, as does its compatibility with d and F.

2.1 Strict Dieudonné towers

At this point, it is useful to introduce the notion of a strict Dieudonné tower. This will abstract away the properties of the system $(\mathcal{W}_r(M)^*)$, and it will often be useful to work with the tower rather than the completion $\mathcal{W}(M)^*$.

Definition 2.2. A strict Dieudonné tower is an inverse system of complexes of abelian groups

$$\dots \to X_2^* \xrightarrow{R} X_1^* \xrightarrow{R} X_0^*, \tag{6}$$

equipped with maps of graded groups $F: X_{r+1}^* \to X_r^*$ and $V: X_r^* \to X_{r+1}^*$, satisfying the following properties:

- 1. X_0^* is the zero complex.
- 2. $R: X_{r+1}^n \to X_r^n$ is surjective for all r, n.
- 3. dF = pFd.
- 4. F, V, and R all commute with each other.
- 5. $FV = VF = p \cdot id.$
- 6. For all $x \in X_r^*$ with $dx \in pX_r^*$, $x \in \operatorname{im}(F : X_{r+1}^* \to X_r^*)$.
- 7. The kernel of $R: X_{r+1}^* \to X_r^*$ equals the *p*-torsion subgroup of X_{r+1}^* .
- 8. The kernel of $R: X_{r+1}^* \to X_r^*$ equals $\operatorname{im}(V^r) + \operatorname{im}(dV^r)$, where V^r and dV^r are the maps $X_1^* \to X_{r+1}^*$.

A morphism of strict Dieudonné towers is a family of morphisms $X_r^n \to Y_r^n$ compatible with d, R, F, and V. We write **TD** for the resulting category.

Proposition 2.3. (2.6.2) If M^* is a saturated Dieudonné complex, then $(\mathcal{W}_r M)^*$ is a strict Dieudonné tower.

The only nontrivial properties are (6) and (7). To prove these we use an easy lemma:

Lemma 2.4. (2.6.3) If M^* is saturated and $x \in M^*$ satisfies $d(V^r x) \in pM^{*+1}$ for some r, then $x \in \text{im } F$.

Proof. Since $d(V^r x) \in pM^{*+1}$, we have $dx = F^r d(V^r x) \in pM^{*+1}$, and then $x \in \text{im } F$ because M^* is saturated.

Proof of proposition. Property 7 amounts to saying that for $x \in M^*$, we have $x \in \operatorname{im} V^r + \operatorname{im} dV^r$ if and only if $px \in \operatorname{im} V^{r+1} + \operatorname{im} dV^{r+1}$. The forward implication is clear:

$$p(V^r a + dV^r b) = V^r(pa) + dV^r(pb)$$

$$\tag{7}$$

$$= V^{r+1}(Fa) + dV^{r+1}(Fb).$$
(8)

For the reverse implication¹, suppose $px = V^r a + dV^r b$ for some a, b. Taking d of both sides, we see that $d(V^r a)$ is a multiple of p. By the lemma, it follows that $a = F\tilde{a}$ for some \tilde{a} . But then $px = pV^{r-1}\tilde{a} + dV^r b$, so $dV^r b$ is also divisible by p, and thus $b = F\tilde{b}$ for some \tilde{b} . We conclude that $px = pV^{r-1}\tilde{a} + pdV^{r-1}\tilde{b}$. Since M^* is p-torsion-free, we are done.

For property 6, suppose $\overline{x} \in \mathcal{W}_r(M)^*$ has the property that $dx \in p\mathcal{W}_r(M)^*$. Choosing a representative $x \in M^*$, this means that $dx = py + V^r a + dV^r b$ for some $a, b, y \in M^*$. Taking d of both sides, we see as before that $d(V^r a)$ is divisible by p and so $a = F\tilde{a}$ for some \tilde{a} . Then we have

$$d(x - V^r b) = p(y + V^{r-1}\widetilde{a}), \tag{9}$$

so the fact that M^* is saturated implies that $x - V^r b = F(z)$ for some $z \in M^*$. But this reduces to $\overline{x} \in \mathcal{W}_r(M)^*$, so $\overline{z} \in \mathcal{W}_{r+1}(M)^*$ maps to \overline{x} , and we are done.

Proposition 2.5. Let (X_r^*) be a strict Dieudonné tower, and let $X^* = \lim_{\leftarrow r} X_r^*$ be equipped with its natural Frobenius. Then (X^*, F) is a saturated Dieudonné complex.

Proof. First of all, it is a Dieudonné complex, because the identity dF = pFd passes to the limit. To see that it is *p*-torsion-free, take any $(x_r)_r$ in the inverse limit with $p(x_r) = 0$. By property 7, we have $x_{r-1} = R(x_r) = 0$ for all r.

It now remains to prove the main property of saturated complexes: that F gives a bijection from X^* to $\{x \in X^* : dx \in pX^{*+1}\}$. Note that F is injective, because VF = p is. For surjectivity, suppose $x = (x_i), x_i \in X_i^*$ has $dx \in pX^*$. By property 6, each x_i equals $F(y_i)$ for some $y_i \in X_i^*$. These y_i are not compatible in general—but they are compatible after applying F, thus after applying VF = p, thus after applying $R : X_i^* \to X_{i-1}^*$ by property 7. So the inverse system $(R(y_{i+1}) \in X_i^*)$ is compatible and has the desired image under F.

2.2 Homological properties of $W_r(M)^*$

Our next goal is to show that the completion map $M^* \to \mathcal{W}(M)^*$ is a *strictification*; that is, a universal morphism to a strict Dieudonné complex. In the process, we will prove some homological properties of $\mathcal{W}_r(M)^*$ which will be useful later, and which will shed some light on the importance of taking the V-adic completion.

¹This proof is surprisingly reminiscent of the standard proof that \sqrt{p} is irrational!

Proposition 2.6. (Generalized Cartier isomorphism) Let M^* be a saturated Dieudonné complex and $r \ge 0$. The map $F^r : M^* \to M^*$ induces an isomorphism of graded groups

$$\mathcal{W}_r(M)^* \to H^*(M^*/p^r M^*). \tag{10}$$

Proof. Given an element $\overline{x} \in \mathcal{W}_r(M)^*$ represented by $x \in M^*$, we map \overline{x} to the cohomology class $[F^r x] \in H^*(M^*/p^r M^*)$; note that this is a cycle because $dF^r x = p^r F^r dx \in p^r M^{*+1}$. This is well-defined because $[V^r x] \mapsto [F^r V^r x] = [p^r x] = 0$ and $[dV^r x] \mapsto [F^r dV^r x] = [dx] = 0$. To prove injectivity, note that $[F^r x] = 0$ implies that $F^r x = p^r y + dz$, so $F^r(x - V^r y - dV^r z) = 0$. But F^r is injective, so x must vanish in $\mathcal{W}_r(M)^*$. Surjectivity amounts to the statement that $F^r : M^* \to \{x \in M^* : dx \in p^r M^*\}$ is surjective. In fact it is a bijection; this is the definition of saturation in the case r = 1, and follows from induction in general.

Warning: this isomorphism does *not* pass to the inverse limit. In fact it is not even compatible with the obvious maps $R: \mathcal{W}_r(M)^* \to \mathcal{W}_{r-1}(M)^*$ and $H^*(M^*/p^rM^*) \to H^*(M^*/p^{r-1}M^*)$, since the map at *r*th level is induced by F^r . It is compatible if one uses the map $F: \mathcal{W}_r(M)^* \to \mathcal{W}_{r-1}(M)^*$, but of course this gives a different inverse system.

This proposition tells us that $\mathcal{W}_r(M)^*$ has a remarkable property: the complex $\mathcal{W}_r(M)^*$ up to isomorphism "encodes" the complex $M^*/p^r M^*$ up to quasi-isomorphism. This is extremely useful for our purposes: when constructing the de Rham-Witt complex of a ring R, we begin with the de Rham complex of a lift \tilde{R} , which is "the right complex up to quasi-isomorphism", and applying the strictification will help us isolate "the right complex on the nose". One way to make this precise is with the following rigidity result:

Corollary 2.7. Let $f : M^* \to N^*$ be a morphism in DC_{sat} . The following conditions are equivalent:

- 1. f induces a quasi-isomorphism $M^*/pM^* \to N^*/pN^*$.
- 2. f induces an isomorphism $\mathcal{W}_1(M)^* \xrightarrow{\sim} \mathcal{W}_1(N)^*$.
- 3. For all $r \ge 0$, f induces a quasi-isomorphism $M^*/p^r M^* \to N^*/p^r N^*$.
- 4. For all $r \geq 0$, f induces an isomorphism $\mathcal{W}_r(M)^* \xrightarrow{\sim} \mathcal{W}_r(N)^*$.

Proof. The proposition implies (1) \iff (2) and (3) \iff (4). The implication (3) \implies (1) is trivial, and (1) \implies (3) can be proved by induction on r.

Proposition 2.8. (2.7.6): Let M^* be a saturated Dieudonné complex. Then $\mathcal{W}(M)^*$ is strict; i.e. the map $\rho_{\mathcal{W}(M)^*} : \mathcal{W}(M)^* \to \mathcal{W}(\mathcal{W}(M))^*$ is an isomorphism.

Proof sketch. One can check directly that $\rho_{\mathcal{W}(M)} = \mathcal{W}(\rho_M)$. So it suffices to check that $\mathcal{W}_r(\rho_M)$: $\mathcal{W}_r(M)^* \to \mathcal{W}_r(\mathcal{W}(M))^*$ is an isomorphism for each r. By the previous corollary, it suffices to check this for r = 1. This can be done by hand.

One can then prove that $\rho_{M^*}: M^* \to \mathcal{W}(M)^*$ is in fact the *initial* map from M^* to a strict Dieudonné complex, and so the completion functor $\mathbf{DC}_{sat} \to \mathbf{DC}_{str}$ is left-adjoint to the forgetful functor. We omit the proof.

At this point, one can show that $(\mathcal{W}_r(-)) : \mathbf{DC}_{\mathrm{str}} \to \mathbf{TD}$ is an equivalence of categories: the reverse equivalence is \lim_{\leftarrow} , and the only thing to check is that a strict Dieudonné tower $(X_r)^*$ is naturally isomorphic to $(\mathcal{W}_r(\lim_{\leftarrow i} X_i^*))$.

The following results continue our theme of comparing M^* with $\mathcal{W}(M)^*$.

Proposition 2.9. For $M^* \in \mathbf{DC}_{sat}$, the map $\rho_M : M^* \to \mathcal{W}(M)^*$ induces quasi-isomorphisms $M^*/p^r M^* \to \mathcal{W}(M)^*/p^r \mathcal{W}(M)^*$ for every r.

Proof sketch. We stated this with " $/p^r$ " replaced with " \mathcal{W}_r " in the proof of the last proposition. Apply the equivalence (3) \iff (4) in the previous corollary to that.

The following result extends the last in two ways: it deals directly with the inverse limit (using a *p*-completion hypothesis), and applies to the strictification $M^* \to W \operatorname{Sat}(M^*)$ of a not necessarily saturated Dieudonné complex M^* .

Corollary 2.10. Let M^* be a Dieudonné complex of Cartier type (not necessarily saturated), and suppose each M^n is p-adically complete. Then the strictification map $M^* \to W \operatorname{Sat}(M^*)$ is a quasi-isomorphism.

Proof. Both the domain and codomain are complexes of *p*-complete, *p*-torsion-free abelian groups,² so it suffices³ to show that $M^*/pM^* \to W \operatorname{Sat}(M^*)/pW \operatorname{Sat}(M^*)$ is a quasi-isomorphism. But this factors as

$$M^*/pM^* \to \operatorname{Sat}(M^*)/p\operatorname{Sat}(M^*) \to W\operatorname{Sat}(M^*)/pW\operatorname{Sat}(M^*),$$
 (11)

where the first map is a quasi-isomorphism by the Cartier criterion (the main theorem proved in Dan's talk last week), and the second is the r = 1 case of the previous proposition.

3 Dieudonné algebras

Definition 3.1. A commutative differential graded algebra (cdga) is a complex (A^*, d) with the structure of a graded ring such that:

- a) Multiplication is graded-commutative: for $x \in A^m$ and $y \in A^n$, $xy = (-1)^{mn}yx \in A^{m+n}$.
- b) If $x \in A^n$ with n odd, then $x^2 = 0 \in A^{2n}$. (This is automatic if A^* has no 2-torsion.)
- c) The Leibniz rule $d(xy) = (dx) \cdot y + (-1)^m x \cdot dy$ for $x \in A^m$.

Definition 3.2. A Dieudonné algebra (A^*, d, F) is a cdga (A^*, d) equipped with a graded ring homomorphism $F : A^* \to A^*$ such that:

1. $dF = pFd : A^* \rightarrow A^{*+1}$.

²TO DO: clarify the subtlety in saying that $W \operatorname{Sat}(M)^n$ is *p*-complete.

 $^{^{3}}$ TO DO: check this!

- 2. $A^n = 0$ when n < 0.
- 3. For $x \in A^0$, $Fx \equiv x^p \pmod{p}$.

These form a category **DA**, where the morphisms are morphisms of graded rings compatible with d and F. Note that we have an obvious forgetful functor **DA** \rightarrow **DC**.

Reinterpretation: We can endow the category **DC** with a tensor product, given by the usual tensor product of complexes (with $d(x \otimes y) = dx \otimes y + (-1)^{|x|} x \otimes dy$ for x homogeneous) with $F(x \otimes y) := F(x) \otimes F(y)$. This makes **DC** into a symmetric monoidal category, where the symmetry is given by the isomorphism

$$A^* \otimes B^* \xrightarrow{\sim} B^* \otimes A^* \tag{12}$$

$$a \otimes b \mapsto (-1)^{|a||b|} b \otimes a. \tag{13}$$

Then a Dieudonné algebra is a commutative algebra object in the category **DC**, where the "commutativity" diagram encodes graded commutativity, and **DA** is the full subcategory of CommAlg(**DC**) where conditions 2, 3, and b above hold. (Note that strict Dieudonné complexes are automatically torsion-free, by flat for *p*-torsion and by *p*-completeness for ℓ -torsion, so condition b comes for free when A^* is strict.)

Remark: For A^* a Dieudonné algebra, $\eta_p(A)^*$ is a Dieudonné subalgebra of A^* . The only subtle part is that $Fx \equiv x^p \pmod{p(\eta_p A^0)}$, because $\eta_p A^0 \neq A^0$ in general. To show that it works, suppose $x \in (\eta_p A)^0$, so that dx = py for $p \in A^1$. Then since A^* is a Dieudonné algebra, we have $Fx = x^p + pz$, for some $z \in A^0$. To show that $z \in (\eta_p A)^0$ (i.e. $dz \in pA^1$), we calculate

$$p(dz) = d(pz) = d(Fx - x^p) = pF(dx) - px^{p-1}dx = p^2Fy - p^2x^{p-1}y$$
(14)

and cancel p's.

Moreover, last week we saw that Frobenius operators on a *p*-torsion-free complex A^* correspond to maps $\alpha : A^* \to \eta_p A^*$ of complexes, where $\alpha = p^n F$ in degree *n*. The same discussion goes through in this complex, where the maps α are required to be cdga homomorphisms:

{graded ring homomorphisms
$$F : A^* \to A^*$$
 with $dF = pFd$ }
 \uparrow
{cdga homomorphisms $\alpha : A^* \to \eta_p A^*$ }

Example: Let R be an \mathbb{F}_p -algebra, and W(R) = W(R)[0] its ring of Witt vectors, as a cdga concentrated in degree 0. Then the Witt vector Frobenius $F : W(R) \to W(R)$ makes W(R) a Dieudonné algebra. This is saturated as a Dieudonné complex if and only if F is a bijection, if and only if R is perfect. In this case, W(R) is also p-complete and $p^n W(R) = \operatorname{im} V^n + \operatorname{im} dV^n$, so W(R) is also a strict Dieudonné complex. (Next week, Rahul will tell us about how the saturation and completion operations behave for Dieudonné algebras.)

3.1 The de Rham complex

As the following proposition shows, a more interesting example of a Dieudonné algebra is given by the absolute de Rham complex $\Omega_R^* := \Omega_{R/\mathbb{Z}}^*$ of a (*p*-torsion-free) ring *R* equipped with a lift of Frobenius. (Remark: you can drop the *p*-torsion-free hypothesis by using δ -maps instead of lifts of Frobenius, and taking some care with the setup. This is done in section 3.7 of the paper, but we will ignore it.)

Proposition 3.3. Let R be a p-torsion-free commutative ring, and $\varphi : R \to R$ a homomorphism with $\varphi(x) \equiv x^p \pmod{p}$. Then there is a unique ring homomorphism $F : \Omega_R^* \to \Omega_R^*$ such that

- 1. For each $x \in R = \Omega_R^0$, we have $F(x) = \varphi(x)$
- 2. For each $x \in R$, we have $F(dx) = x^{p-1}dx + d(\frac{\varphi(x) x^p}{n})$.

This F gives Ω_R^* the structure of a Dieudonné algebra.

Interpretation of the second condition: F is the "divided Frobenius" $\frac{\varphi^*}{p^n}$ on Ω_R^n , where $\varphi^* = \alpha_F$ is pullback of differential forms. As an aside, note that we could alternatively define the cdga homomorphism $\alpha : \Omega_R^* \to \Omega_R^*$ to be pullback of differential forms, note by the calculation

$$\alpha(dx) = d\alpha(x) = d\varphi(x) \equiv d(x^p) = px^{p-1} \equiv 0 \pmod{p} \tag{15}$$

that α is divisible by p on Ω_R^1 , and conclude (because Ω^* is generated by Ω^1 as a ring) that α is divisible by p^n on Ω^n . Then if Ω_R^* is p-torsion-free, we could define F as $\frac{\alpha}{p^n}$ on Ω^n . But in fact Ω_R^* can have p-torsion even if R is quite reasonable. For example, if K is a number field, then $\Omega_{\mathcal{O}_K/\mathbb{Z}}^1$ has p-torsion if and only if K/\mathbb{Q} is ramified at p. (Its annihilator is the different ideal of K/\mathbb{Q} .)

The proof of the proposition is explicit. Uniqueness of F is clear, as it has been specified on a set of generators of Ω_R^* . One calculates that the map $\rho: R \to \Omega_R^1$ given by $x^{p-1}dx + d(\frac{\varphi(x)-x^p}{p})$ is a φ -linear derivation; i.e. an additive map satisfying $\rho(xy) = \varphi(x)\rho(y) + \varphi(y)\rho(x)$. The universal property of $d: R \to \Omega_R^1$ implies that ρ factors as $F \circ d$ for some φ -semilinear map $F: \Omega_R^1 \to \Omega_R^1$. Then F satisfies the relations $(F(dx))^2 = 0$ for all $x \in R$, so it extends to the exterior algebra Ω_R^* . Finally, one checks that it satisfies the necessary relation dF = pFd on the inputs x and dx ($x \in R$), and that this identity is preserved by multiplication.

Proposition 3.4. Let R and φ be as before, and view Ω_R^* as a Dieudonné algebra. For any *p*-torsion-free Dieudonné algebra A^* , the restriction map

$$\operatorname{Hom}_{\mathbf{DA}}(\Omega_R^*, A^*) \to \operatorname{Hom}_{\operatorname{ring}}(R, A^0)$$
(16)

is injective, and its image consists of homomorphisms $f: R \to A^0$ such that the diagram

$$\begin{array}{c|c} R & \xrightarrow{f} A^{0} \\ \varphi & & \downarrow_{F} \\ R & \xrightarrow{f} A^{0} \end{array}$$

commutes.