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1 Introduction
Where we’re going: given an Fp-algebra R, we want to construct a canonical complex comput-
ing its crystalline cohomology. Our first attempt is to lift R to characteristic zero, along with a
Frobenius map, and take the p-completed de Rham complex of this lift R̃. This computes the
right cohomology, but it has an obvious flaw: as a complex, it depends on our choice of lift.

To fix this problem, we will view Ω̂R̃ as a Dieudonné complex (or better, a Dieudonné algebra—
you can probably imagine roughly what this means, and we’ll define it later today), and we
will apply two homological algebra operations to this: saturation and (“V -adic”) completion
(= strictification). These operations will enlarge our complex considerably. We will eventually
show that the output of this process satisfies a universal property depending only on R, which
implies that it is well-defined and functorial in R.

The main goals for this talk are as follows: introduce the last completion operation W and
check that it behaves as expected, define Dieudonné algebras, and finally discuss some proper-
ties of the de Rham complex and its p-adic completion as Dieudonné algebras.

2 The completion of a Dieudonné complex
Let M∗ be a saturated Dieudonné complex. Last time we saw how to endow M∗ with a
Verschiebung operator V , a homomorphism of graded abelian groups satisfying V F = FV = p,
V d = pdV , and FdV = d. This allows us to make the following definition:

Definition 2.1. For M∗ a saturated Dieudonné complex, we set Wr(M)∗ = M∗/(imV r +
im dV r) for r ≥ 0. These come equipped with quotient maps R :Wr+1(M)→Wr, which allow
us to form the completion

W(M)∗ = lim
←

(· · · → W2(M)∗ →W1(M)∗ →W0(M)∗ = 0). (1)
∗Notes for a talk in Berkeley’s number theory seminar, on Bhatt-Lurie-Mathew’s paper Revisiting the de

Rham-Witt complex.
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Clearly, this is a complex of abelian groups equipped with a morphism ρM : M∗ →W(M)∗.
We have several claims:

1. W(M)∗ is naturally equipped with the structure of a Dieudonné complex, and is functorial
in M∗.

2. W(M)∗ is saturated.

3. Define a saturated Dieudonné complex M∗ to be strict if M∗ → W(M)∗ is an isomor-
phism. Then W(M)∗ is strict, and it is universal among strict Dieudonné complexes
equipped with a map from M∗.

4. The category DCstr of strict Dieudonné complexes is equivalent to the category of so-
called strict Dieudonné towers (to be defined soon), which will package together the data
of Wr(M)∗ for all r without assuming that they actually come from some M∗.

5. There is a “generalized Cartier isomorphism” relating Wr(M)∗ to H∗(M∗/prM∗).

Before checking these properties, let’s look at two examples.

First, let A = A[0] be any abelian group viewed as a complex concentrated in degree zero. Then
any group map F : A→ A gives A the structure of a Dieudonné complex. This is saturated if
and only if A is p-torsion-free and F is an isomorphism. If so, then imV r + im dV r = prA, so
W(A)∗ is the p-adic completion.

A more complicated example is the free strict Dieudonné complex on one generator x. We
set

M0 = {
∑
m≥0

amF
mx+

∑
n>0

bnV
nx : am, bn ∈ Zp, am → 0} (2)

M1 = {
∑
m≥0

cmF
mdx+

∑
n>0

dndV
nx : cm, dn ∈ Zp, cm → 0} (3)

and

d

(∑
m≥0

amF
mx+

∑
n>0

bnV
nx

)
=
∑
m≥0

pmamF
mdx+

∑
n>0

bndV
nx. (4)

(Note that there is no condition on bn or dn, because V n and dV n already converge to 0.) Then
M∗ = (M0

d→ M1) is a strict Dieudonné complex, and it is freely generated by x = F 0x ∈ M0

in the sense that for any N∗ ∈ DCstr, evaluation on x gives a bijection

HomDC(M∗, N∗)→ N0. (5)

Let’s start checking our claimed properties. First, in order for W(M)∗ to be a Dieudonné com-
plex, we must endow it with a Frobenius. To do so, we note that since FV = p and FdV = d,
F maps imV r + im dV r into imV r−1 + im dV r−1 and thus induces a unique map Wr(M)∗ →
Wr−1(M)∗. Passing to the inverse limit gives a Frobenius map F : W(M)∗ → W(M)∗, which
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satisfies the relation dF = pFd because this is true at all finite levels. This makes W(M)∗ a
Dieudonné complex.

For future reference, we note the V -analogue of this as well: V maps imV n + im dV n into
imV n+1 + im dV n+1 (because V d = pdV ), so we get a map V : Wr(M)∗ → Wr+1(M)∗, which
likewise passes to the limit.

Functoriality is clear: given f : M∗ → N∗, we get maps f : Wr(M
∗) → Wr(N

∗) for all r,
compatible with the respective d and F maps. Then f passes to the limit, as does its compat-
ibility with d and F .

2.1 Strict Dieudonné towers

At this point, it is useful to introduce the notion of a strict Dieudonné tower. This will abstract
away the properties of the system (Wr(M)∗), and it will often be useful to work with the tower
rather than the completion W(M)∗.

Definition 2.2. A strict Dieudonné tower is an inverse system of complexes of abelian groups

· · · → X∗2
R→ X∗1

R→ X∗0 , (6)

equipped with maps of graded groups F : X∗r+1 → X∗r and V : X∗r → X∗r+1, satisfying the
following properties:

1. X∗0 is the zero complex.

2. R : Xn
r+1 → Xn

r is surjective for all r, n.

3. dF = pFd.

4. F , V , and R all commute with each other.

5. FV = V F = p · id.

6. For all x ∈ X∗r with dx ∈ pX∗r , x ∈ im(F : X∗r+1 → X∗r ).

7. The kernel of R : X∗r+1 → X∗r equals the p-torsion subgroup of X∗r+1.

8. The kernel of R : X∗r+1 → X∗r equals im(V r) + im(dV r), where V r and dV r are the maps
X∗1 → X∗r+1.

A morphism of strict Dieudonné towers is a family of morphisms Xn
r → Y n

r compatible with
d,R, F, and V . We write TD for the resulting category.

Proposition 2.3. (2.6.2) If M∗ is a saturated Dieudonné complex, then (WrM)∗ is a strict
Dieudonné tower.

The only nontrivial properties are (6) and (7). To prove these we use an easy lemma:
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Lemma 2.4. (2.6.3) If M∗ is saturated and x ∈M∗ satisfies d(V rx) ∈ pM∗+1 for some r, then
x ∈ imF .

Proof. Since d(V rx) ∈ pM∗+1, we have dx = F rd(V rx) ∈ pM∗+1, and then x ∈ imF because
M∗ is saturated.

Proof of proposition. Property 7 amounts to saying that for x ∈M∗, we have x ∈ imV r+im dV r

if and only if px ∈ imV r+1 + im dV r+1. The forward implication is clear:

p(V ra+ dV rb) = V r(pa) + dV r(pb) (7)
= V r+1(Fa) + dV r+1(Fb). (8)

For the reverse implication1, suppose px = V ra+dV rb for some a, b. Taking d of both sides, we
see that d(V ra) is a multiple of p. By the lemma, it follows that a = F ã for some ã. But then
px = pV r−1ã + dV rb, so dV rb is also divisible by p, and thus b = F b̃ for some b̃. We conclude
that px = pV r−1ã+ pdV r−1b̃. Since M∗ is p-torsion-free, we are done.

For property 6, suppose x ∈ Wr(M)∗ has the property that dx ∈ pWr(M)∗. Choosing a
representative x ∈M∗, this means that dx = py + V ra+ dV rb for some a, b, y ∈M∗. Taking d
of both sides, we see as before that d(V ra) is divisible by p and so a = F ã for some ã. Then
we have

d(x− V rb) = p(y + V r−1ã), (9)

so the fact thatM∗ is saturated implies that x−V rb = F (z) for some z ∈M∗. But this reduces
to x ∈ Wr(M)∗, so z ∈ Wr+1(M)∗ maps to x, and we are done.

Proposition 2.5. Let (X∗r ) be a strict Dieudonné tower, and let X∗ = lim←rX
∗
r be equipped

with its natural Frobenius. Then (X∗, F ) is a saturated Dieudonné complex.

Proof. First of all, it is a Dieudonné complex, because the identity dF = pFd passes to the
limit. To see that it is p-torsion-free, take any (xr)r in the inverse limit with p(xr) = 0. By
property 7, we have xr−1 = R(xr) = 0 for all r.

It now remains to prove the main property of saturated complexes: that F gives a bijec-
tion from X∗ to {x ∈ X∗ : dx ∈ pX∗+1}. Note that F is injective, because V F = p is. For
surjectivity, suppose x = (xi), xi ∈ X∗i has dx ∈ pX∗. By property 6, each xi equals F (yi) for
some yi ∈ X∗i . These yi are not compatible in general—but they are compatible after applying
F , thus after applying V F = p, thus after applying R : X∗i → X∗i−1 by property 7. So the
inverse system (R(yi+1) ∈ X∗i ) is compatible and has the desired image under F .

2.2 Homological properties of Wr(M)∗

Our next goal is to show that the completion map M∗ → W(M)∗ is a strictification; that
is, a universal morphism to a strict Dieudonné complex. In the process, we will prove some
homological properties ofWr(M)∗ which will be useful later, and which will shed some light on
the importance of taking the V -adic completion.

1This proof is surprisingly reminiscent of the standard proof that √p is irrational!
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Proposition 2.6. (Generalized Cartier isomorphism) Let M∗ be a saturated Dieudonné com-
plex and r ≥ 0. The map F r : M∗ →M∗ induces an isomorphism of graded groups

Wr(M)∗ → H∗(M∗/prM∗). (10)

Proof. Given an element x ∈ Wr(M)∗ represented by x ∈ M∗, we map x to the cohomology
class [F rx] ∈ H∗(M∗/prM∗); note that this is a cycle because dF rx = prF rdx ∈ prM∗+1. This
is well-defined because [V rx] 7→ [F rV rx] = [prx] = 0 and [dV rx] 7→ [F rdV rx] = [dx] = 0. To
prove injectivity, note that [F rx] = 0 implies that F rx = pry+ dz, so F r(x−V ry− dV rz) = 0.
But F r is injective, so x must vanish in Wr(M)∗. Surjectivity amounts to the statement that
F r : M∗ → {x ∈ M∗ : dx ∈ prM∗} is surjective. In fact it is a bijection; this is the definition
of saturation in the case r = 1, and follows from induction in general.

Warning: this isomorphism does not pass to the inverse limit. In fact it is not even compat-
ible with the obvious maps R :Wr(M)∗ →Wr−1(M)∗ and H∗(M∗/prM∗)→ H∗(M∗/pr−1M∗),
since the map at rth level is induced by F r. It is compatible if one uses the map F :Wr(M)∗ →
Wr−1(M)∗, but of course this gives a different inverse system.

This proposition tells us that Wr(M)∗ has a remarkable property: the complex Wr(M)∗ up
to isomorphism “encodes” the complex M∗/prM∗ up to quasi-isomorphism. This is extremely
useful for our purposes: when constructing the de Rham-Witt complex of a ring R, we begin
with the de Rham complex of a lift R̃, which is “the right complex up to quasi-isomorphism”,
and applying the strictification will help us isolate “the right complex on the nose”. One way
to make this precise is with the following rigidity result:

Corollary 2.7. Let f : M∗ → N∗ be a morphism in DCsat. The following conditions are
equivalent:

1. f induces a quasi-isomorphism M∗/pM∗ → N∗/pN∗.

2. f induces an isomorphism W1(M)∗
∼→W1(N)∗.

3. For all r ≥ 0, f induces a quasi-isomorphism M∗/prM∗ → N∗/prN∗.

4. For all r ≥ 0, f induces an isomorphism Wr(M)∗
∼→Wr(N)∗.

Proof. The proposition implies (1) ⇐⇒ (2) and (3) ⇐⇒ (4). The implication (3) =⇒ (1)
is trivial, and (1) =⇒ (3) can be proved by induction on r.

Proposition 2.8. (2.7.6): Let M∗ be a saturated Dieudonné complex. Then W(M)∗ is strict;
i.e. the map ρW(M)∗ :W(M)∗ →W(W(M))∗ is an isomorphism.

Proof sketch. One can check directly that ρW(M) =W(ρM). So it suffices to check thatWr(ρM) :
Wr(M)∗ →Wr(W(M))∗ is an isomorphism for each r. By the previous corollary, it suffices to
check this for r = 1. This can be done by hand.

One can then prove that ρM∗ : M∗ → W(M)∗ is in fact the initial map from M∗ to a
strict Dieudonné complex, and so the completion functor DCsat → DCstr is left-adjoint to the
forgetful functor. We omit the proof.
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At this point, one can show that (Wr(−)) : DCstr → TD is an equivalence of categories:
the reverse equivalence is lim←, and the only thing to check is that a strict Dieudonné tower
(Xr)

∗ is naturally isomorphic to (Wr(lim←iX
∗
i )).

The following results continue our theme of comparing M∗ with W(M)∗.

Proposition 2.9. For M∗ ∈ DCsat, the map ρM : M∗ →W(M)∗ induces quasi-isomorphisms
M∗/prM∗ →W(M)∗/prW(M)∗ for every r.

Proof sketch. We stated this with “/pr” replaced with “Wr” in the proof of the last proposition.
Apply the equivalence (3) ⇐⇒ (4) in the previous corollary to that.

The following result extends the last in two ways: it deals directly with the inverse limit
(using a p-completion hypothesis), and applies to the strictification M∗ →W Sat(M∗) of a not
necessarily saturated Dieudonné complex M∗.

Corollary 2.10. Let M∗ be a Dieudonné complex of Cartier type (not necessarily saturated),
and suppose each Mn is p-adically complete. Then the strictification map M∗ →W Sat(M∗) is
a quasi-isomorphism.

Proof. Both the domain and codomain are complexes of p-complete, p-torsion-free abelian
groups,2 so it suffices3 to show thatM∗/pM∗ →W Sat(M∗)/pW Sat(M∗) is a quasi-isomorphism.
But this factors as

M∗/pM∗ → Sat(M∗)/p Sat(M∗)→W Sat(M∗)/pW Sat(M∗), (11)

where the first map is a quasi-isomorphism by the Cartier criterion (the main theorem proved
in Dan’s talk last week), and the second is the r = 1 case of the previous proposition.

3 Dieudonné algebras
Definition 3.1. A commutative differential graded algebra (cdga) is a complex (A∗, d) with the
structure of a graded ring such that:

a) Multiplication is graded-commutative: for x ∈ Am and y ∈ An, xy = (−1)mnyx ∈ Am+n.

b) If x ∈ An with n odd, then x2 = 0 ∈ A2n. (This is automatic if A∗ has no 2-torsion.)

c) The Leibniz rule d(xy) = (dx) · y + (−1)mx · dy for x ∈ Am.

Definition 3.2. A Dieudonné algebra (A∗, d, F ) is a cdga (A∗, d) equipped with a graded ring
homomorphism F : A∗ → A∗ such that:

1. dF = pFd : A∗ → A∗+1.
2TO DO: clarify the subtlety in saying that W Sat(M)n is p-complete.
3TO DO: check this!
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2. An = 0 when n < 0.

3. For x ∈ A0, Fx ≡ xp (mod p).

These form a category DA, where the morphisms are morphisms of graded rings compatible
with d and F . Note that we have an obvious forgetful functor DA→ DC.

Reinterpretation: We can endow the category DC with a tensor product, given by the usual
tensor product of complexes (with d(x⊗ y) = dx⊗ y + (−1)|x|x⊗ dy for x homogeneous) with
F (x ⊗ y) := F (x) ⊗ F (y). This makes DC into a symmetric monoidal category, where the
symmetry is given by the isomorphism

A∗ ⊗B∗ ∼→ B∗ ⊗ A∗ (12)

a⊗ b 7→ (−1)|a||b|b⊗ a. (13)

Then a Dieudonné algebra is a commutative algebra object in the category DC, where the
“commutativity” diagram encodes graded commutativity, and DA is the full subcategory of
CommAlg(DC) where conditions 2, 3, and b above hold. (Note that strict Dieudonné com-
plexes are automatically torsion-free, by fiat for p-torsion and by p-completeness for `-torsion,
so condition b comes for free when A∗ is strict.)

Remark: For A∗ a Dieudonné algebra, ηp(A)∗ is a Dieudonné subalgebra of A∗. The only
subtle part is that Fx ≡ xp (mod p(ηpA

0)), because ηpA0 6= A0 in general. To show that it
works, suppose x ∈ (ηpA)0, so that dx = py for p ∈ A1. Then since A∗ is a Dieudonné algebra,
we have Fx = xp + pz, for some z ∈ A0. To show that z ∈ (ηpA)0 (i.e. dz ∈ pA1), we calculate

p(dz) = d(pz) = d(Fx− xp) = pF (dx)− pxp−1dx = p2Fy − p2xp−1y (14)

and cancel p’s.

Moreover, last week we saw that Frobenius operators on a p-torsion-free complex A∗ corre-
spond to maps α : A∗ → ηpA

∗ of complexes, where α = pnF in degree n. The same discussion
goes through in this complex, where the maps α are required to be cdga homomorphisms:

{graded ring homomorphisms F : A∗ → A∗ with dF = pFd}
l

{cdga homomorphisms α : A∗ → ηpA
∗}

Example: Let R be an Fp-algebra, and W (R) = W (R)[0] its ring of Witt vectors, as a cdga
concentrated in degree 0. Then the Witt vector Frobenius F : W (R)→ W (R) makes W (R) a
Dieudonné algebra. This is saturated as a Dieudonné complex if and only if F is a bijection, if
and only if R is perfect. In this case, W (R) is also p-complete and pnW (R) = imV n + im dV n,
so W (R) is also a strict Dieudonné complex. (Next week, Rahul will tell us about how the
saturation and completion operations behave for Dieudonné algebras.)
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3.1 The de Rham complex

As the following proposition shows, a more interesting example of a Dieudonné algebra is given
by the absolute de Rham complex Ω∗R := Ω∗R/Z of a (p-torsion-free) ring R equipped with a lift
of Frobenius. (Remark: you can drop the p-torsion-free hypothesis by using δ-maps instead of
lifts of Frobenius, and taking some care with the setup. This is done in section 3.7 of the paper,
but we will ignore it.)

Proposition 3.3. Let R be a p-torsion-free commutative ring, and ϕ : R→ R a homomorphism
with ϕ(x) ≡ xp (mod p). Then there is a unique ring homomorphism F : Ω∗R → Ω∗R such that

1. For each x ∈ R = Ω0
R, we have F (x) = ϕ(x).

2. For each x ∈ R, we have F (dx) = xp−1dx+ d(ϕ(x)−x
p

p
).

This F gives Ω∗R the structure of a Dieudonné algebra.

Interpretation of the second condition: F is the “divided Frobenius” ϕ∗

pn
on Ωn

R, where ϕ∗ =
αF is pullback of differential forms. As an aside, note that we could alternatively define the
cdga homomorphism α : Ω∗R → Ω∗R to be pullback of differential forms, note by the calculation

α(dx) = dα(x) = dϕ(x) ≡ d(xp) = pxp−1 ≡ 0 (mod p) (15)

that α is divisible by p on Ω1
R, and conclude (because Ω∗ is generated by Ω1 as a ring) that α

is divisible by pn on Ωn. Then if Ω∗R is p-torsion-free, we could define F as α
pn

on Ωn. But in
fact Ω∗R can have p-torsion even if R is quite reasonable. For example, if K is a number field,
then Ω1

OK/Z has p-torsion if and only if K/Q is ramified at p. (Its annihilator is the different
ideal of K/Q.)

The proof of the proposition is explicit. Uniqueness of F is clear, as it has been specified on a
set of generators of Ω∗R. One calculates that the map ρ : R→ Ω1

R given by xp−1dx+ d(ϕ(x)−x
p

p
)

is a ϕ-linear derivation; i.e. an additive map satisfying ρ(xy) = ϕ(x)ρ(y) + ϕ(y)ρ(x). The
universal property of d : R → Ω1

R implies that ρ factors as F ◦ d for some ϕ-semilinear map
F : Ω1

R → Ω1
R. Then F satisfies the relations (F (dx))2 = 0 for all x ∈ R, so it extends to the

exterior algebra Ω∗R. Finally, one checks that it satisfies the necessary relation dF = pFd on
the inputs x and dx (x ∈ R), and that this identity is preserved by multiplication.

Proposition 3.4. Let R and ϕ be as before, and view Ω∗R as a Dieudonné algebra. For any
p-torsion-free Dieudonné algebra A∗, the restriction map

HomDA(Ω∗R, A
∗)→ Homring(R,A

0) (16)

is injective, and its image consists of homomorphisms f : R→ A0 such that the diagram

R
f //

ϕ

��

A0

F
��

R
f // A0

commutes.
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